Table of Contents
Note that semicolon can be replaced with comma, if comma is not used as decimal or thousands separator.
sqrt 4 = sqrt(4) = 4^(0.5) = 4^(1/2) = 2
sqrt(25; 16; 9; 4) = [5; 4; 3; 2]
sqrt(32) = 4 × √(2) (in exact mode)
cbrt(−27) = root(-27; 3) = −3 (real root)
(−27)^(1/3) ≈ 1.5 + 2.5980762i (principal root)
ln 25 = log(25; e) ≈ 3.2188758
log2(4)/log10(100) = log(4; 2)/log(100; 10) = 1
5! = 1 × 2 × 3 × 4 × 5 = 120
5\2 = 5//2 = trunc(5 / 2) = 2 (integer division)
5 mod 3 = mod(5; 3) = 2
52 to factors = 2^2 × 13
25/4 × 3/5 to fraction = 3 + 3/4
gcd(63; 27) = 9
sin(pi/2) − cos(pi) = sin(90 deg) − cos(180 deg) = 2
sum(x; 1; 5) = 1 + 2 + 3 + 4 + 5 = 15
sum(\i^2+sin(\i); 1; 5; \i) = 1^2 + sin(1) + 2^2 + sin(2) + ... ≈ 55.176162
product(x; 1; 5) = 1 × 2 × 3 × 4 × 5 = 120
var1:=5 (stores value 5 in variable var1)
var1 × 2 = 10
5^2 #this is a comment = 25
sinh(0.5) where sinh()=cosh() = cosh(0.5) ≈ 1.1276260
plot(x^2; −5; 5) (plots the function y=x^2 from -5 to 5)
5 dm3 to L = 25 dm^3 to L = 5 L
20 miles / 2h to km/h = 16.09344 km/h
1.74 to ft = 1.74 m to ft ≈ 5 ft + 8.5039370 in
1.74 m to -ft ≈ 5.7086614 ft
100 lbf × 60 mph to hp ≈ 16 hp
50 Ω × 2 A = 100 V
50 Ω × 2 A to base = 100 kg·m²/(s³·A)
10 N / 5 Pa = (10 N)/(5 Pa) = 2 m²
5 m/s to s/m = 0.2 s/m
500 € − 20% to $ ≈ $451.04
500 megabit/s × 2 h to b?byte ≈ 419.09516 gibibytes
k_e / G × a_0 = (coulombs_constant / newtonian_constant) × bohr_radius ≈ 7.126e9 kg·H·m^−1
ℎ / (λ_C × c) = planck ∕ (compton_wavelength × speed_of_light) ≈ 9.1093837e-31 kg
5 ns × rydberg to c ≈ 6.0793194E-8c
atom(Hg; weight) + atom(C; weight) × 4 to g ≈ 4.129e-22 g
(G × planet(earth; mass) × planet(mars; mass))/(54.6e6 km)^2 ≈ 8.58e16 N (gravitational attraction between earth and mars)
"±" can be replaced with "+/-"; result with interval arithmetic activated is shown in parenthesis
sin(5±0.2)^2/2±0.3 ≈ 0.460±0.088 (0.46±0.12)
(2±0.02 J)/(523±5 W) ≈ 3.824±0.053 ms (3.825±0.075 ms)
interval(−2; 5)^2 ≈ intervall(−8.2500000; 12.750000) (intervall(0; 25))
(5x^2 + 2)/(x − 3) = 5x + 15 + 47/(x − 3)
(\a + \b)(\a − \b) = ("a" + "b")("a" − "b") = 'a'^2 − 'b'^2
(x + 2)(x − 3)^3 = x^4 − 7x^3 + 9x^2 + 27x − 54
factorize x^4 − 7x^3 + 9x^2 + 27x − 54 = x^4 − 7x^3 + 9x^2 + 27x − 54 to factors = (x + 2)(x − 3)^3
cos(x)+3y^2 where x=pi and y=2 = 11
gcd(25x; 5x^2) = 5x
1/(x^2+2x−3) to partial fraction = 1/(4x − 4) − 1/(4x + 12)
x+x^2+4 = 16
= x = 3 or x = −4
x^2/(5 m) − hypot(x; 4 m) = 2 m where x>0
x ≈ 7.1340411 m
cylinder(20cm; x) = 20L (calculates the height of a 20 L cylinder with radius of 20 cm)
= x = (1 ∕ (2π)) m
= x ≈ 16 cm
asin(sqrt(x)) = 0.2
= x = sin(0.2)^2
= x ≈ 0.039469503
x^2 > 25x
= x > 25 or x < 0
solve(x = y+ln(y); y) = lambertw(e^x)
solve2(5x=2y^2; sqrt(y)=2; x; y) = 32/5
multisolve([5x=2y+32; y=2z; z=2x]; [x; y; z]) = [−32/3; −128/3; −64/3]
dsolve(diff(y; x) − 2y = 4x; 5) = 6e^(2x) − 2x − 1
diff(6x^2) = 12x
diff(sinh(x^2)/(5x) + 3xy/sqrt(x)) = (2/5) × cosh(x^2) − sinh(x^2)/(5x^2) + (3y)/(2 × √(x))
integrate(6x^2) = 2x^3 + C
integrate(6x^2; 1; 5) = 248
integrate(sinh(x^2)/(5x) + 3xy/sqrt(x)) = 2x × √(x) × y + Shi(x^2) / 10 + C
integrate(sinh(x^2)/(5x) + 3xy/sqrt(x); 1; 2) ≈ 3.6568542y + 0.87600760
limit(ln(1 + 4x)/(3^x − 1); 0) = 4 / ln(3)
((1; 2; 3); (4; 5; 6)) = [[1; 2; 3]; [4; 5; 6]] (2×3 matrix)
(1; 2; 3) × 2 − 2 = [1 × 2 − 2; 2 × 2 − 2; 3 × 2 − 2] = [0; 2; 4]
(1; 2; 3).(4; 5; 6) = dot((1; 2; 3); (4; 5; 6)) = 32 (dot product)
cross((1; 2; 3); (4; 5; 6)) = [−3; 6; −3] (cross product)
hadamard([[1; 2; 3]; [4; 5; 6]]; [[7; 8; 9]; [10; 11; 12]]) = [[7; 16; 27]; [40; 55; 72]] (hadamard product)
((1; 2; 3); (4; 5; 6)) × ((7; 8); (9; 10); (11; 12)) = [[58; 64]; [139; 154]] (matrix multiplication)
((1; 2); (3; 4))^-1 = inverse([[1; 2]; [3; 4]]) = [[−2; 1]; [1.5; −0.5]]
mean(5; 6; 4; 2; 3; 7) = 4.5
stdev(5; 6; 4; 2; 3; 7) ≈ 1.87
quartile((5; 6; 4; 2; 3; 7); 1) = percentile([5; 6; 4; 2; 3; 7]; 25) ≈ 2.9166667
normdist(7; 5) ≈ 0.053990967
spearman(column(load(test.csv); 1); column(load(test.csv); 2)) ≈ −0.33737388 (depends on the data in the CSV file)
10:31 + 8:30 to time = 19:01
10h 31min + 8h 30min to time = 19:01
now to utc = "2020-07-10T07:50:40Z"
"2020-07-10T07:50CET" to utc+8 = "2020-07-10T14:50:00+08:00"
"2020-05-20" + 523d = addDays(2020-05-20; 523) = "2021-10-25"
today − 5 days = "2020-07-05"
"2020-10-05" − today = days(today; 2020-10-05) = 87 d
timestamp(2020-05-20) = 1 589 925 600
stamptodate(1 589 925 600) = "2020-05-20T00:00:00"
"2020-05-20" to calendars (returns date in Hebrew, Islamic, Persian, Indian, Chinese, Julian, Coptic, and Ethiopian calendars)
52 to bin = 0011 0100
52 to bin16 = 0000 0000 0011 0100
52 to oct = 064
52 to hex = 0x34
0x34 = hex(34) = base(34; 16) = 52
523<<2&250 to bin = 0010 1000
52.345 to float ≈ 0100 0010 0101 0001 0110 0001 0100 1000
float(01000010010100010110000101001000) = 1715241/32768 ≈ 52.345001
floatError(52.345) ≈ 1.2207031e-6
52.34 to sexa = 52°20′24″
1978 to roman = MCMLXXVIII
52 to base 32 = 1K
sqrt(32) to base sqrt(2) ≈ 100000
0xD8 to unicode = Ø
code(Ø) to hex = 0xD8